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AS Level Physics
Chapter 10 – Waves

10.4.1 Stationary Waves

Notes

1

www.tutorpacks.co.uk @tutorpacks

https://www.youtube.com/channel/UCf0Baa0__vg1XoNS0ay9Krw
https://www.tiktok.com/@tutorpacks?_d=secCgYIASAHKAESPgo8sbS3LTMUnDQsKSZIU8nyu2JwzZWl3EBCpBUyHxKe8zJbXrzndQJbwTomElO971WqtkSk%2BwTPTd5tvRwNGgA%3D&language=en&sec_uid=MS4wLjABAAAAwkQUt9LjNdX35m3dFWIqCEQOaIENwYDqOpHILTzaWbLyRAF7y1aKxSJzwxWPuoXa&sec_user_id=MS4wLjABAAAAwkQUt9LjNdX35m3dFWIqCEQOaIENwYDqOpHILTzaWbLyRAF7y1aKxSJzwxWPuoXa&share_app_id=1233&share_author_id=6996655590592988165&share_link_id=3e449414-f896-4d6c-a823-353aa918ade7&timestamp=1629743849&u_code=dk6448077med76&user_id=6996655590592988165&utm_campaign=client_share&utm_medium=android&utm_source=more&source=h5_m&_r=1
https://twitter.com/TutorPacks
https://www.instagram.com/tutorpacks/


tutorpacks.co.uk tutorpacks.co.uk

© Tutor Packs

Stationary Waves on a Stretched String

The above setup can be used to investigate the behaviour of vibrating 
strings. A string or wire is connected to the vibrator on one end. The 
vibrator is then connected to a signal generator. The other end of the 
string passes over a pulley and is supported by a weight, which keeps the 
tension in the spring constant.

The vibrator produces transverse waves along the string which are then 
reflected by the pulley. The reflected waves meet with the waves coming 
from the vibrator and superposition takes place. Therefore stationary 
waves are produced because the two sets of waves are similar and travel 
in opposing directions.

Also note, at both ends of the string you see Nodes 𝑁 . The amplitude is 
zero at Nodes.

In the centre of the loop, an Antinode 𝐴  can be seen. These are points 
where the amplitude is at its maximum.

Stationary (or Standing) Waves

In simple words, when a progressive wave is reflected at a boundary, 
stationary waves are produced.

A stationary wave, unlike progressive waves, does not transmit 
energy.

2

Progressive waves travel outwards from a source and carry energy 
from one place to another through a material or a vacuum.

A stationary (or standing) wave is the superposition of two identical 
progressive waves (with the same wavelength, speed, frequency, and 

roughly equal amplitudes) moving in opposite directions.

Signal 
generator

Vibrator

Light string

Pulley 

Weights 

Motion

N N
AA stationary wave (or standing wave) 

pattern is created at particular 

frequencies (known as the Resonant 

Frequencies). A single loop with a 

large amplitude can be seen at this 

frequency, as shown opposite.

An object can reach its maximum amplitude at the 
resonant frequency. We will cover resonance in 

greater detail in a later pack.



tutorpacks.co.uk tutorpacks.co.uk

© Tutor Packs

Stationary Waves on a Stretched String

When the vibrator frequency is increased to 3𝑓0, 4𝑓0, 5𝑓0, ...etc, more 
stationary waves with 3, 4, 5,..., vibrating loops are seen, example 
below:

Stationary Waves on a Stretched String

This stationary wave with a single loop at the fundamental mode of 
vibration can also be called the 1st Harmonic. 

The stationary wave is generated because the vibrator is ready to send 
out a second wave in the time it takes for the first wave to reach the 
end and return. So, the second wave from the vibrator reinforces with 
the first wave. Each new input from the vibrator is in phase with the 
wave in the string, therefore increasing the amplitude, as the energy is 
continuously added to the string.

3

N N
A

The lowest frequency at which a single 

loop forms a stationary wave is referred 

to as the:

Fundamental Mode Of Vibration

The frequency with which this occurs is 

referred to as:

Fundamental Frequency (𝒇𝟎)

N N
A A

N

The single-loop stationary wave 

dissipates when the vibrator frequency 

is increased further.

A new stationary wave is created with 

twice the fundamental frequency (2𝑓0). 

This wave has two loops with three 

nodes (N); one in the centre and one at 

each end of the string. There are also 

two antinodes (A) produced. This new 

stationary wave with 2 loops is known 

as the 2nd harmonic. 

N N N N
A A A 𝟑𝒇𝟎

𝟒𝒇𝟎

𝟓𝒇𝟎
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Harmonics of Stretched Strings

• 2nd Harmonic 

Therefore, the frequency of the 2nd harmonic vibrations is:

𝑓1 =
𝑣

𝜆1
=

𝑣

𝐿
= 𝟐𝒇𝟎

• 3rd Harmonic

Harmonics of Stretched Strings

So to summarise, when a stretched string is set into vibration, a 
progressive wave travels along the string to the fixed end where it is 
reflected. As these reflected waves (of equal frequency and amplitude) 
become superposed, a stationary wave forms on the string.

Different stationary wave patterns appear on the string as the frequency 
of the generator is increased from a very low value.

Furthermore, there is a node at either end of the string between the 
pulley and the vibrator in every situation.

When the stationary waves are formed, an exact number of half 

wavelengths 
1

2
𝜆  fit onto the string at resonant frequencies.

Fundamental Mode of Vibration (1st Harmonic)

We also know that 𝑣 = 𝑓𝜆, thus rearranging this we can find frequency to 
be 𝑓 =

𝑣

𝜆
. Therefore, the fundamental frequency is calculated as follows: 

𝑓0 =
𝑣

𝜆0

Then substituting 𝜆0 = 2𝐿 into the above formula, we can rewrite the 
fundamental frequency as:

 𝒇𝟎 =
𝒗

𝟐𝑳

4

At the lowest possible frequency, the 

fundamental pattern of vibration can be 

seen, with a node (N) at the fixed ends 

and an Antinode (A) in the middle. If L is 

the length of the string and 𝜆0 is the 

wavelength of the stationary wave, it can 

be seen that a string of length 𝐿 in the 

fundamental mode only produces half a 

wavelength 
1

2
𝜆0 , so:

𝐿 =
𝜆0

2
∴ 𝜆0= 2𝐿

N NA

𝑳

𝝀𝟎

𝟐

Vibrating 
String

We know that 𝑓0 =
𝑣

2𝐿
, 

therefore:

2 × 𝑓0 = 2 ×
𝑣

2𝐿
=

𝑣

𝐿
= 𝑓1

N NA

𝑳

𝝀𝟏

𝟐

Vibrating 
String

A
N

𝝀𝟏

𝟐

𝝀𝟏

The 2nd Harmonic will occur if the 

generator's frequency is increased. There 

is a node in the middle, and the string is 

divided into two loops. 

Here each loop is half a wavelength long 

therefore 𝜆1 is L. Hence:

𝜆1 = 𝐿

The 3rd Harmonic is the next stationary 

wave pattern, with four nodes (N) and 

three antinodes (A).

Since each loop is half a wavelength long 

and there are three loops, you get:
3

2
𝜆2 = 𝐿

∴  𝜆2 =
2

3
𝐿

As a result, the 3rd harmonic vibration's 

frequency is:

𝑓2 =
𝑣

𝜆2
=

3𝑣

2𝐿
= 𝟑𝒇𝟎

N NA

𝑳

𝝀𝟏

𝟐

Vibrating 
String

A
N

𝝀𝟏

𝟐

𝟑

𝟐
𝝀𝟐

N

A

𝝀𝟏

𝟐

We know that 𝑓0 =
𝑣

2𝐿
, 

therefore:

3𝑓0 = 3 ×
𝑣

2𝐿
=

3𝑣

2𝐿
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Investigating Resonance (AQA only)

To investigate the impact of mass, length, and tension on the resonant 
frequencies of a string, follow these steps:

Step1) Measure string mass and length:

• Use a mass balance to measure the mass (𝑀) of different types of 
strings.

• Use a ruler to measure the length (𝐿) of each string.

• Calculate the mass per unit length (𝜇) of each string using the formula 

𝜇 =
𝑀

𝐿
, where 𝜇 is in 𝑘𝑔 𝑚−1, 𝑀 is in 𝑘𝑔 𝑎𝑛𝑑 𝐿 is in 𝑚.

Step 2) Set up the apparatus:

- Set up the experiment as shown above with one of the strings.

- Record the calculated 𝜇.

- Measure and record the length (𝑙) between the vibrator and the pulley.

- Calculate the tension (𝑇) on the string using 𝑇 = 𝑚𝑔, where 𝑚 is the 
added mass in kg, and 𝑔 is the acceleration due to gravity (approx. 
9.81 𝑚𝑠−2) 

Harmonics of Stretched Strings

You can see a pattern emerge as we go through the harmonics. 
Stationary wave patterns occur at frequencies such as:

Fundamental Mode (1st Harmonic) = 𝑓0

2nd Harmonic = 2𝑓0

3rd Harmonic = 3𝑓0

and so on where 𝑓0 is the frequency of the fundamental vibrations. 
This is true for every vibrating linear system with a node at both ends.

5
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Motion
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Investigating Resonance (AQA only)

Factors affecting resonant frequency

The resonant frequency is impacted by the length, mass per unit length, and 
tension in the following manner:

• Length Impact: The longer the string, the lower its resonant frequency. 
This is due to the half-wavelength being longer, meaning if wavelength (λ) 
increases, frequency (f) decreases assuming speed (c) is constant.

• Mass per Unit Length Impact: A heavier string (greater mass per unit 
length) results in a lower resonant frequency, as waves move slower 
along the string. With a constant length, a lower wave speed (c) results in 
a lower frequency (f).

• Tension Impact: Lower tension on the string leads to a lower resonant 
frequency. This is because waves travel more slowly on a loose string.

Investigating Resonance (AQA only)

Step 3) Find the first harmonic:

• Turn on the signal generator and adjust the frequency to make the 
vibration transducer vibrate. 

• Create the first harmonic, characterised by a stationary wave with 
a node at each end and a single antinode. 

• Note the frequency (𝑓) of the first harmonic as indicated by the 
signal generator. 

Step 4) Investigate the effects:

• To examine the effect of each factor (mass, length, and tension) 
on the resonant frequency, keep all other conditions constant 
while varying one factor at a time: 

o Change the length (𝑙): Move the vibrator closer to or 
farther from the pulley to alter the vibrating length of the 
string. 

o Change the tension (𝑇): Add or remove masses to adjust 
the tension on the string.

o Change the string sample: Use strings of different masses 
to vary 𝜇 

6
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Air Columns (Pipes)

When the air at one end of a tube is caused to vibrate, a progressive, 
longitudinal wave travels down the tube and is reflected at the other end.

The diagram below shows a pipe with fine powder inside it. There is also a 
small loudspeaker linked to a signal generator near the open end of a pipe. 
When the signal frequency is adjusted, the pipe resonates with sound at 
certain frequencies. At each resonance stationary sound waves are formed in 
the pipe. 

The sound waves are reflected at the closed end of the tube. The reflected 
waves go in opposite directions down the pipe, and because they have the 
same speed, frequency, and amplitude, they superpose and produce a 
stationary wave pattern at certain frequencies.

The fine powder in the tube creates evenly spaced piles at resonant 
frequencies. Since, air molecules move longitudinally down the tube axis, the 
vibrations amplitude changes from a maximum at the antinodes (A) to zero at 
the nodes (N). 

The large amplitude vibrations at the antinodes positions shift the fine power, 
causing it to concentrate towards the node positions, where the amplitude of 
the molecules' vibrations is zero.

Remember:

• The amplitude of air molecule vibration is always maximum at the tube's 
open end (i.e. it is an Antinode).

• At the tube's closed end, the amplitude of air molecules' vibration is 
always zero (i.e. it is a Node).

• Distance between adjacent nodes (or antinodes) = 
𝟏

𝟐
𝝀

Investigating Resonance (AQA only)

Calculate resonant frequency

The frequency of the first harmonic of a string can be calculated 
using:

𝑓 =
1

2𝑙

𝑇

𝜇

Where:

𝑓 = frequency in 𝐻𝑧

𝑙 = length of vibrating string in 𝑚

𝑇 = tension on string in 𝑁

𝜇 = mass per unit length of string in 𝑘𝑔 𝑚−1

The experiment confirms the formula: longer strings or higher mass 
decrease frequency, while greater tension increases it.

This formula applies only to the first harmonic, not to other 
frequencies.

7

To Signal generator
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𝟐

Powder in heaps at resonance
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Harmonics of Closed Pipes

3rd Harmonic

5th Harmonic

Harmonics of Closed Pipes

Fundamental Mode of Vibration (1st Harmonic)

The harmonics occurs at odd number frequencies such as 3𝑓0, 5𝑓0, 
7𝑓0, and so on. There is a node (N) at the closed end and an antinode 
(A) at the open end in each example, with one or more evenly spaced 
nodes (N) or antinodes (A) in between.

8

The lowest frequency at which the pipe 

resonates with sound (the fundamental 

frequency), there is a node (N) at the 

closed end and an antinode (A) at the 

open end. 

As shown opposite, L is the pipe length 

and only a quarter of a wavelength 
1

4
𝜆  is 

produced therefore: 

𝐿 =
𝜆0

4
And the fundamental wavelength is, 

𝜆0 = 4𝐿

Again using 𝑓 =
𝑣

𝜆
 we get:

So the fundamental frequency, 

𝑓0 =
𝑣

4𝐿
where 𝑣 is the speed of sound in the pipe.

𝝀𝟎

𝟒𝑳

𝒇𝟎

𝑨

𝑵

𝟑𝝀𝟏

𝟒𝑳

𝟑𝒇𝟎

𝑨

𝑵

𝑨

𝑵

The 3rd Harmonic, you can see ¾ of a wavelength 
𝟑𝝀𝟏

𝟒
 

therefore:

𝐿 =
3𝜆1

4
And so the 3rd harmonic wavelength, 

𝝀𝟏 =
𝟒𝑳

𝟑
,

where 𝐿 is the pipe length.

The note produced has a frequency three times higher 

than the fundamental frequency because the 3rd harmonic 

wavelength is one third of the wavelength of the 1st 

harmonic. Thus a closed pipe can only produce odd 

harmonics and using 𝑓 =
𝑣

𝜆
 we get:

The 3rd Harmonic frequency, 𝒇𝟏 =
𝟑𝒗

𝟒𝑳
= 𝟑𝒇𝟎

Where 𝑣 is the speed of sound in the pipe.

You can see 1 and ¼ of a wavelength at the 5th Harmonic, 

producing 
𝟓𝝀𝟐

𝟒
 as a fraction therefore:

𝐿 =
5𝜆2

4
And so 5th harmonic wavelength, 𝜆2 =

4𝐿

5
, 

where L is the pipe length.

And using 𝑓 =
𝑣

𝜆
 we get:

The 5th Harmonic frequency, 𝒇𝟐 =
𝟓𝒗

𝟒𝑳
= 𝟓𝒇𝟎

Where 𝑣 is the speed of sound in the pipe.

Additional resonances can be found at 7𝑓0, 9𝑓0, etc., which 
correspond to an odd number of quarter wavelengths equal to 
the pipe length. 

𝟓𝝀𝟐

𝟒𝑳

𝟓𝒇𝟎

𝑨

𝑵

𝑨

𝑵

𝑨

𝑵
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Harmonics of Open Pipes

2nd Harmonic

3rd Harmonic 

Harmonics of Open Pipes

An open pipe is one that is open to the atmosphere on both ends.

In an open pipe sound waves travelling along the pipe partially reflect at the 
open end because the speed changes at the exit. At either end, an antinode 
(A) is produced.

Consider, a low-pressure region travelling along the tube towards the open 
end. Since the air outside is at atmospheric pressure, when the low pressure 
region reaches the tube’s end, air from the atmosphere rushes in, creating a 
compression wave that travels back down the tube. Vice verse is true when a 
high pressure region hits the end of the tube.

Fundamental Mode of Vibration (1st Harmonic)

The harmonics occurs at frequencies such as 2𝑓0, 3𝑓0, 4𝑓0, and so on. Each 
harmonic, has an antinode (A) at either end, with one or more equally spaced 
nodes (N) or antinodes (A) in between.  
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𝝀𝟎

𝟐𝑳

𝒇𝟎

𝑨

𝑨

𝑵

𝝀𝟏
𝑳

𝟐𝒇𝟎

𝑨

𝑨

𝑵

𝑵

𝑨

𝟑𝝀𝟐

𝟐𝑳

𝟑𝒇𝟎

𝑨

𝑨

𝑵

𝑵

𝑨

𝑵

𝑨

The lowest frequency at which the pipe 

resonates with sound (the fundamental 

frequency), there is an antinode (A) at either 

end of the pipe with a node in the middle. 

As you can see opposite, L is the length of the 

pipe and only half of a wavelength 
1

2
𝜆  is 

produced therefore: 

𝐿 =
𝜆0

2
So the fundamental wavelength is: 

𝜆0 = 2𝐿

Using 𝑓 =
𝑣

𝜆
 we get:

The fundamental frequency, 

𝑓0 =
𝑣

2𝐿
Where 𝑣 is the speed of sound in the pipe.

At the 2nd Harmonic, you see a whole wavelength 𝜆1  
therefore:

𝐿 = 𝜆1

So 2nd harmonic wavelength, 𝝀𝟏 = 𝑳,

Where L is the pipe length

Using 𝑓 =
𝑣

𝜆
 we get:

The 2nd  Harmonic frequency, 𝒇𝟏 =
𝒗

𝑳
= 𝟐𝒇𝟎

Where 𝑣 is the speed of sound in the pipe.

At the 3rd Harmonic, you can see one and a half 

wavelength producing 
𝟑𝝀𝟐

𝟐
 as a fraction therefore:

𝐿 =
3𝜆2

2
And so 5th  harmonic wavelength, 𝜆2 =

2𝐿

3
,

Where L is the pipe length

Using 𝑓 =
𝑣

𝜆
 we get:

The 3rd Harmonic frequency, 𝒇𝟐 =
𝟑𝒗

𝟐𝑳
= 𝟑𝒇𝟎

Where 𝑣 is the speed of sound in the pipe.

Further resonances occur at 4𝑓0, 5𝑓0, etc., 
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Finding the Speed of Sound in a Air PipeFinding the Speed of Sound in a Air Pipe

A closed-end pipe can be made by putting a hollow tube into a 
measuring cylinder of water. Holding a sounding tuning fork over the 
open end of the tube will cause it to vibrate.

10

Hollow 
tube

Tuning 
Fork

Measuring 
Cylinder

Water

The hollow tube has a natural 

frequency of vibration, and if the tuning 

fork frequency matches it, the tube 

enters into resonant vibration, and the 

tuning fork sound becomes 

considerably louder.

When choosing a tuning fork, make a 

note of the frequency of sound it 

generates (it will be stamped on the 

side).

Tap the tuning fork gently and hold it 

directly above the hollow tube. The 

sound waves produced by the tuning 

fork travel down the tube, where they 

are reflected (forming a node) at the 

air/water surface.

Move the tube up and down until the 

sound from the fork resonates at a 

shorter distance between the top of the 

tube and the water level, i.e. adjust the 

tube length until a LOUD sound is 

heard.

The lowest frequency at which the pipe resonates with 

sound (the fundamental frequency or the first resonance), 

there is a node (N) at the closed end and an antinode (A) 

at the open end.

As you can see opposite, L is the pipe length and only a 

quarter of a wavelength 
1

4
𝜆  is produced therefore: 

𝐿1 =
𝜆

4
… … … (1)

Therefore fundamental wavelength, 𝜆 = 4𝐿1

By increasing the length of the air column further, a second 

resonance position with three times the fundamental frequency is 

obtained.

You can see three-quarters of a wavelength 
𝟑𝝀

𝟒
 therefore:

𝐿2 =
3𝜆

4
… … … (2)

So 2nd harmonic wavelength is, 𝝀 =
𝟒𝑳𝟐

𝟑
 

Where L is the pipe length

Now 2 − 1 ⟶ 𝐿2 − 𝐿1 =
𝜆

2

∴  𝜆 = 2(𝐿2 − 𝐿1)
That is our wavelength of the sound in the pipe and using 𝑣 = 𝑓𝜆 

we can calculate the speed of sound by rearranging for 𝜆 to give:

𝑣 = 2𝑓(𝐿2 − 𝐿1)
Where, 𝑣, is the speed of sound in the pipe and 𝑓 is the frequency 

of the tuning fork.

𝟑𝝀

𝟒
𝑳𝟐

𝑨

𝑵

𝑨

𝑵

𝒆

𝟑𝒇𝟎

𝝀

𝟒
𝑳𝟏

𝑨

𝑵

𝒆

𝒇𝟎
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Demonstration of Stationary Waves with 
Microwaves

The signal generator provides the value for the frequency (𝑓), thus 
microwaves speed (𝑣) can be calculated using:

𝑣 = 𝑓𝜆

Demonstration of Stationary Waves with 
Microwaves

Microwaves can be directed towards a metal plate using a microwave 
transmitter attached to a signal generator, as seen above. At the 
metal plate, the microwaves are reflected back to the emitter.

Here, low readings are detected at evenly spaced positions when a 
probe linked to a microammeter is moved along the line between the 
transmitter and the metal plate.

This is due to the fact that the reflected waves and the directed waves 
from the transmitter combine to form a stationary wave. When a 
microammeter reading is low, it means the microwave intensity is low, 
and a Node, 𝑁, is formed; when the reading is high, it means the 
microwave intensity is high, and an Antinode, 𝐴, is formed.

A full wavelength contains three nodes, so the distance that the probe 
moves through a number of nodes can be used to determine the 
microwaves wavelength 𝜆 . This can be done by measuring the 
distance travelled by the probe as it passes through three nodes 
indicated by minimum microammeter values.
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𝝀

Reflected waves
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𝑵 𝑵 𝑵
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Please see ‘10.4.2 Stationary worked examples’ 
pack for exam style questions.

 

For more revision notes, tutorials and worked 
examples please visit www.tutorpacks.co.uk.
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