

AS Level Physics

Chapter 5 – Waves and Particle Nature of Light 5.5.2 Optics (Edexcel Only)

Worked Examples

www.tutorpacks.co.uk

Optics

Exam Style Question 1

A converging lens of power $10\,D$ produces a magnified image of a small object. The image is $0.25\,m$ from the centre of the lens and is the same way up as the object.

- (i) State one other property of the image.
- (ii) Determine the focal length of the lens.
- (iii) Show that the object should be placed approximately $0.07\ m$ from this lens for the image to be formed.
- (iv) Draw a ray diagram below to show how this image is formed. Mark the positions of the object, image and the principal foci of the lens.

A scale diagram is not required.

Optics

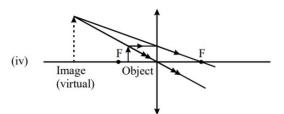
Exam Style Question 1

(i) State one other property of the image. Image is virtual.

(ii) Determine the focal length of the lens.

Use
$$f = \frac{1}{P}$$

$$f = \frac{1}{10 D} = 0.10 m$$


(iii) Show that the object should be placed approximately $0.07\ m$ from this lens for the image to be formed.

Use
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{0.1 m} = \frac{1}{u} - \frac{1}{0.25 m}$$
$$\frac{1}{u} = 14$$
$$u = \frac{1}{14} = 0.071 m$$

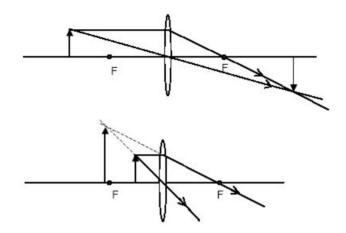
(iv) Draw a ray diagram below to show how this image is formed. Mark the positions of the object, image and the principal foci of the lens.

A scale diagram is not required.

Optics

Exam Style Question 2

A converging lens can be used to produce both a magnified real image and a magnified virtual image of an object.


- (a) Draw ray diagrams to show how each image is formed. Label the principal foci of the lens in each case.
- (b) Calculate the object distance required to produce a magnified image $0.25\ m$ from a lens of focal length $0.10\ m$ where the image is virtual.

tutorpad

Optics

Exam Style Question 2

(a) Draw ray diagrams to show how each image is formed. Label the principal foci of the lens in each case.

(b) Calculate the object distance required to produce a magnified image $0.25\ m$ from a lens of focal length $0.10\ m$ where the image is virtual.

$$Use \frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{0.10 m} = \frac{1}{u} - \frac{1}{0.25 m}$$

$$\frac{1}{u} = \frac{1}{0.10 m} + \frac{1}{0.25 m}$$

$$\frac{1}{u} = 14$$

$$u = \frac{1}{14} = 0.07 m$$

Please see '5.5.1 Optics (Edexcel Only) notes' pack for revision notes. tutorpacks.co.uk

For more revision notes, tutorials and worked examples please visit www.tutorpacks.co.uk.