

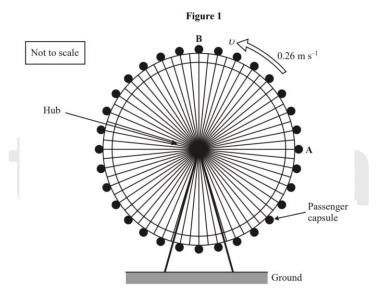
# **A2 Level Physics**

Chapter 6 – Further Mechanics

6.3.2 Kinematics of Circular Motion Worked Examples

www.tutorpacks.co.uk








## **Kinematics of Circular Motion**

## **Exam Style Question 1**

The London Eye is a tourist attraction designed to give passengers a panoramic view over London. The giant wheel completes two revolutions in one hour. Each capsule moves with a constant speed of  $0.26\ m\ s^{-1}$  as it follows a circular path.



Calculate the radius of this circular path.

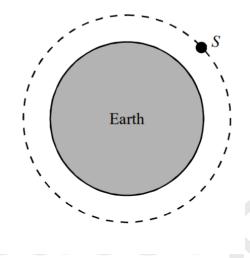
# **Kinematics of Circular Motion**

#### **Exam Style Question 1**

Calculate the radius of this circular path.

Use  $v = \frac{2\pi r}{T}$  and rearrange for r:

But  $T = \frac{3600}{2} = 1800s$  because the London eye completes two revolutions in one hour therefore it can complete one revolution in 30 minutes (or 1800 seconds).


$$r = \frac{vT}{2\pi} = \frac{(0.26m \, s^{-1})(1800 \, s)}{2\pi} = 74.48 \, m$$

ks.co.uk

# **Kinematics of Circular Motion**

## **Exam Style Question 2**

A satellite S orbits the Earth once every  $87\ minutes$ . Show that its angular speed is approximately  $1\times 10^{-3}$  radians per second.



# **Kinematics of Circular Motion**

## **Exam Style Question 2**

Show that its angular speed is approximately  $1 \times 10^{-3}$  radians per second.

Use 
$$\omega = \frac{2\pi}{T}$$
 
$$\omega = \frac{2\pi}{(87 \ minutes \times 60)} = 1.2 \times 10^{-3} \ rads/s$$

ks.co.uk

**Please see '6.3.1 Kinematics of Circular Motion** notes' pack for revision notes. tutorpacks.co.uk © Tutor Packs

For more revision notes, tutorials and worked examples please visit www.tutorpacks.co.uk.