
© Tutor Packs

A2 Level Physics
Chapter 11 – Gravitational Fields

11.1.1 Gravitation and Planetary Motion

Notes
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Gravitational Fields

The mass of an object produces a gravitational field around it, and 
this force field exerts an attractive force on any other mass that 
enters the field region. A gravitational field surrounds all masses, 
from the tiniest particles of matter to the largest stars.

When an object is dropped, the Earth and the object exert equal and 
oppositely directed forces on each other; however, because the 
object's mass is tiny in comparison to the Earth's, the object is drawn 
towards the Earth.

A gravitational field is a force field.

Force fields are created by interactions between objects or particles 
e.g. between masses in the case of gravity. 

All masses have a gravitational field around them. 

Gravitational Field Lines

Gravitational field lines, also known as 'lines of force,' are vectors 
that show the direction of the force that masses in a gravitational 
field would experience. The gravitational field of the Earth is shown 
in the diagram below using field lines:

Note:

• If you place a little mass, 𝑚, anywhere in the Earth’s gravitational 
field, it will always be attracted towards the Earth.

• The Earth’s gravitational field is radial meaning that the lines of 
force meet at the Earth's centre.

• The separation of the field lines in a radial field increases with 
distance from the centre, indicating that the field strength 
decreases as distance increases. As a result, the further away 
you move mass, 𝑚 from the Earth, the less force it experiences.

• Higher line density shows a stronger gravitational field.

The field is (almost) uniform near the Earth's surface, with field lines 
that are (almost) parallel and equally spaced. This means that close 
to the Earth’s surface you have a constant gravitational strength and 
direction. 

2

A Gravitational Field is a region in space in which any mass will 

experience a force of attraction. 

A force field is a region in which a body experiences a non-contact 

force.

𝒎

Only massive mass objects, such as 

stars and planets, have gravitational 

fields that have a noticeable effect. 

Smaller objects do have gravitational 

fields that attract other masses, but 

they are too weak to be detected 

without specialised equipment.
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Gravitational Field Strength (𝒈)

The Field Strength (𝑔) at a point in a gravitational field is the Force 
(𝐹) per unit mass (𝑚) experienced by a small test mass placed at 
the point.

In other words, the Earth’s gravitational field strength 𝑔  is 
9.81 𝑁/𝑘𝑔. This means that an object will experience 9.81 𝑁 of force 
for every 𝑘𝑔 of mass.

To avoid causing a large change in the gravitational field being 
measured, the test mass must be small.

Note:

The value of 𝑔 fluctuates slightly depending on where you are on the 
Earth's surface because of:

• Non-uniformities in the shape and composition of the Earth.

• The Earth's spin reduces 𝑔 by an amount that varies from zero at 
the poles to a maximum at the equator.

Gravitational Field Strength (𝒈)

The weight of an object is the force of gravity acting on it. If an object 
of mass (𝑚) is in a gravitational field of strength (𝑔), the gravitational 
force (𝐹) on the object is:

𝐹 = 𝑚𝑔

If the object is free to fall under the action of this force, it accelerates 
with an acceleration:

𝑎 =
𝐹

𝑚
=

𝑚𝑔

𝑚
= 𝑔

This means that, the Field strength at any point in a gravitational field 
(𝑁𝑘𝑔−1) equals the acceleration of free fall experienced by an object 
at that point (𝑚𝑠−2).

As a result, the object falls freely with an acceleration equal to 𝑔. So, 
𝑔 can alternatively be described as the acceleration of free fall of an 
object.

The average gravitational field strength of the Earth’s is 9.81 𝑁 𝑘𝑔−1.

Gravitational field strength is a vector quantity.

Worked example:

On the Moon, gravity exerts a force of 113.75N on an 70.0kg 
astronaut. What is the value of 𝑔 on the Moon?

Just put the numbers into the formula:

𝑔 =
𝐹

𝑚
=

113.75𝑁

70𝑘𝑔
= 1.625 = 1.63𝑁𝑘𝑔−1(𝑡𝑜 3𝑠. 𝑓. )

3

Field strength (𝑔) is expressed mathematically as:

𝑔 =
𝐹

𝑚
Where:

𝑔 = gravitational field strength in 𝑁𝑘𝑔−1

𝐹 = force in 𝑁
𝑚 = mass in 𝑘𝑔
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Fields

A field, as we know, is a region of space where forces are exerted on 
objects with certain properties. A gravitational field is only one type of 
field that can produce a force. The other two are:

1. Electric fields affect anything that has a charge.

2. Magnetic field affects permanent magnets and electric currents.

Many of the features of these three types of fields are similar, but 
there are a few key differences.

In coming packs, we'll go over electric and magnetic fields in more 
detail. 

Newton’s Law of Gravitation 

In a gravitational field, the force experienced by an object is always 
attractive. Every particle in the universe attracts every other particle, 
although the strength of attraction varies significantly depending on the 
masses involved and the distance between them. 

Consider two point masses (𝑚1 and 𝑚2) with distance (𝑟) between their 
centres. The gravitational attraction force (𝐹) exerted by each mass on 
the other can then be calculated using Newton's law of gravitation:

𝐹 ∝
𝑚1 𝑚2

𝑟2

This shows that particles with a force, 𝐹 is directly proportional to the 
product of their masses and inversely proportional to the square of their 
separation.

By inserting a constant of proportionality, we can express Newton's Law 
of Gravitation mathematically:

𝐹 =
𝐺 𝑚1 𝑚2

𝑟2

Where:

𝐹 = magnitude of force in 𝑁

𝐺 = gravitational constant in 𝑁𝑚2𝑘𝑔−2 6.67 × 10−11𝑁𝑚2𝑘𝑔−2

𝑚1 = mass of the first object in 𝑘𝑔

𝑚2 = mass of the second object in 𝑘𝑔

𝑟 = distance between the two masses in 𝑚

4

𝒎𝟏 𝒎𝟐𝑭 𝑭

𝒓
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Newton’s Law of Gravitation 

According to Newton's Law of Gravitation, the gravitational force 
between any two point objects is:

• Always an attractive force.

• Proportional to the mass of each object.

• Inversely proportional to their separation 𝑟 .

Note:

• Newton's law is based on the concept of point masses. The law 
can be applied to real bodies by assuming that all of a body's 
mass is concentrated at its centre of mass (e.g. uniform spheres). 
The separation (𝑟) is the distance between the centre of mass.

• You might also see this formula with a minus sign because the 
force is always an attractive force. This shows the force's vector 
nature. But, the minus sign may be omitted because it is 
generally easier to consider only the magnitude of the force.

• 𝐺 should not be confused with 𝑔. 𝐺 is the gravitational constant 
(6.67 × 10−11𝑁𝑚2𝑘𝑔−2) where as 𝑔 is the gravitational field 
strength (𝑔 = 9.81 𝑚𝑠−2 on Earth). 

• Gravitational forces are extremely weak, unless at least one of 
the objects is of planetary mass or larger.

• Gravitational forces act at a distance, without the need for an 
intervening medium. 

Newton’s Law of Gravitation 

Inverse Square Law

The Newton’s law of gravitation is an example of an inverse square 

law 𝐹 ∝
1

𝑟2  because it is radial. 

This means that when the distance 𝑟 between the masses increases, 
the force 𝐹 decreases. Since it’s 𝑟2 and not just 𝑟, if the distance 
doubles then the force will be one quarter the strength of the initial 
force, for example:

Worked Example:

The gravitational force between two objects 10m apart (to 2s.f.) is 
0.3N. What will the gravitational force between them be if they move 
to 35m apart?

Here we use the inverse square law: 𝐹 ∝
1

𝑟2

Therefore 𝐹 =
𝑘

𝑟2, where 𝑘 is a constant

Find the constant 𝑘 = 𝐹 × 𝑟2 = 0.3𝑁 × 10 2 = 30

So 𝐹 =
30

𝑟2 so if the two objects now move 35m part the gravitational 

force between them will be:

𝐹 =
30

35 2
= 0.024489 … 𝑁

𝐹 = 2.4 × 10−2𝑁 (to 2s.f)

5

Distance apart 𝒓 𝟐𝒓 𝟑𝒓 𝟒𝒓

Gravitational force 𝐹 𝐹

4

𝐹

9

𝐹

16
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Gravitational Field Strength of a Point Mass

Consider a point mass (𝑚) located at a distance (𝑟) from the centre of a 
planet or star with mass 𝑀  and a gravitational field strength (𝑔).

Using the definition of field strength, the force (𝐹) acting on the point mass 
(𝑚) is:

𝐹 = 𝑚𝑔 … … … … … (1)

And applying Newton’s law of gravitation, the force (𝐹) is:

𝐹 =
𝐺𝑀𝑚

𝑟2
… … … … … … … (2)

When you combine equations (1) and (2), you get:

𝑚𝑔 =
𝐺𝑀𝑚

𝑟2

Therefore:

𝑔 =
𝐺𝑀

𝑟2

Where:

𝑔 = magnitude of gravitational field strength in 𝑁𝑘𝑔−1

𝐺 = gravitational constant in 𝑁𝑚2𝑘𝑔−2

𝑀 = mass of the object creating the gravitational field in 𝑘𝑔

𝑟 = distance from the point mass in 𝑚

Gravitational Field Strength of a Point Mass

The relationship between gravitational field strength (g) and distance from 
the Earth's centre (r) is shown in the graph above. From the graph you can 
see that:

• At the centre of the Earth: 𝑔 = 0.

• Below the surface: 𝑔 is directly proportional to 𝑟.

• For 𝑟 > 𝑅 (Earth radius): 𝑔 is inversely proportional to 𝑟2.

The gravitational potential can be calculated using the area under the curve.

Note: All of the above can be applied to any planet or star. 

The magnitude of gravitational field strength also obeys the inverse square 
law as 𝑔 ∝

1

𝑟2.

6

𝑭

Point mass = 𝒎
Planet of 
mass = 𝑴

𝒓
𝟎 𝑹 𝟐𝑹

𝟗. 𝟖𝟏

𝟐. 𝟒𝟓

Gravitational field 
strength, g/𝑵𝒌𝒈−𝟏

Distance from center 
of planet, r/𝒎

𝟏. 𝟎𝟗

𝟑𝑹

𝒈 = −
𝑮𝑴

𝒓𝟐
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Orbits

Planets and satellites in space are kept in orbit by gravitational 
forces.

A satellite is any body with a small mass orbiting a much larger 
mass, such as the Moon orbiting the Earth, the planets orbiting the 
Sun, and so on. These are examples of natural satellites.

Artificial satellites are created by humans and sent into orbit. Due to 
the gravitational force present between themselves and the Earth, 
they are able to maintain their orbit at sufficient heights to escape 
atmospheric friction, which would dissipate their energy and bring 
them crashing back to Earth.

Orbits

Satellites are held in orbit by gravitational ‘pull’ of the mass they’re 
orbiting. Since the planets in our solar system have almost circular 
orbits, you can study their orbital speed and period using circular 
motion equations.

A centripetal force keeps any object undergoing circular motion 
(such as a satellite) in its trajectory. What causes this force depends 
on the object. In the case of satellites, it's the gravitational attraction 
of the mass they’re orbiting. Therefore, the gravitational force is the 
centripetal force in this case.

In the diagram above, the Earth of mass (𝑚) orbits the Sun of mass 
(𝑀) at a speed (𝑣) and an orbital radius (𝑟). The gravitational force 
acting between the Sun and the Earth provides the centripetal force 
required for circular motion. Therefore: 

Gravitational force = centripetal force 
𝐺𝑀𝑚

𝑟2
=

𝑚𝑣2

𝑟

Therefore: 𝑣2 =
𝐺 𝑀 𝑚 𝑟

𝑟2 𝑚

𝑣2 =
𝐺𝑀

𝑟
… … … … (1)

7
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(𝑀) Earth

(𝑚)

The attractive gravitational pull 
between the Earth and the Sun 
provides centripetal force.

Circular 
orbit

𝑟

𝑣
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Orbits

Therefore, the orbital speed of a satellite is:

𝑣 =
𝐺𝑀

𝑟

So, a satellite's orbital speed is inversely proportional to the square 
root of its orbital radius, or:

𝑣 ∝
1

𝑟

The orbital period, 𝑇, is the amount of time it takes for a satellite to 
complete one orbit. To calculate the orbital period re-call,

𝑠𝑝𝑒𝑒𝑑 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑖𝑛 𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑜𝑟𝑏𝑖𝑡

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑜𝑟𝑏𝑖𝑡 (𝑃𝑒𝑟𝑖𝑜𝑑)

𝑣 =
2𝜋𝑟

𝑇

Then substituting for 𝑣 in equation (1) gives:
2𝜋𝑟 2

𝑇2
=

𝐺𝑀

𝑟
4𝜋2𝑟2

𝑇2
=

𝐺𝑀

𝑟
𝑟3

𝑇2
=

𝐺𝑀

4𝜋2

Therefore:
𝑇2

𝑟3
=

4𝜋2

𝐺𝑀

So the orbital period is:

𝑇 =
4𝜋2𝑟3

𝐺𝑀

This shows that the orbital period squared is proportional to the 
orbital radius cubed:

𝑇2 ∝ 𝑟3 or 𝑇 ∝ 𝑟3

Orbits

This means that the larger the orbital radius of a satellite, the slower 
it will travel and the longer it will take to complete one orbit.

The equation below shows that for a given planet or star, the ratio 
𝑇2

𝑟3  is a constant for all of its satellites, regardless of the planets 

mass.
𝑇2

𝑟3
=

4𝜋2

𝐺𝑀
… … … … (2)

To prove the above, Newton had assumed:

• The planets and the Sun were all point masses. 

• The gravitational force between the Sun and the planets was 
directly proportional to their masses and inversely proportional to 
the square of their distance apart.

Kelper’s 3rd Law

Forty years or so earlier, Johannes Kepler, an astronomer, had 
made careful observations and came up with Kepler's 3rd law, which 
related two quantities:

1) The average distance of a planet from the centre of the Sun, 𝑟.

2) The length of time it takes for the planet to complete one orbit of 
the Sun, its period, 𝑇.

Using his measurements, he discovered that:

The period squared is proportional to the mean radius cubed 𝑇2 ∝ 𝑟3

As a result, Kepler proposed his 3rd Law of Planetary Motion which 
stated:

The ratio 
𝑇2

𝑟3  is the same (i.e. constant) for all planets.

Newton was then able to use his Theory of Gravitation to prove 
Kepler’s third law.

8
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Orbits

We can rearrange equation (2) to give the following:

𝑀 =
4𝜋2𝑟3

𝐺𝑇2

This equation allows us to calculate the Mass (𝑀) of the central 
planet or star from the Period (𝑇) and orbit radius (𝑟) of one its 
satellites. 

Worked Example:

Planets A and B are orbiting the same star. Planet A has a period of 
19.5 hours and an orbital radius of 7.0 × 1010𝑚. The orbital radius of 
Planet B is 1.5 × 1012𝑚. Calculate the orbital period of planet B in 
hours.

𝑇2 ∝ 𝑟3, so 
𝑇2

𝑟3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Therefore: 
𝑇𝐴

2

𝑟𝐴
3 =

𝑇𝐵
2

𝑟𝐵
3 and so 𝑇𝐵

2 =
𝑇𝐴

2 𝑟𝐵
3

𝑟𝐴
3

𝑇𝐵 =
𝑇𝐴

2 𝑟𝐵
3

𝑟𝐴
3 =

19.5 2 × 1.5 × 1012 3

7.0 × 1010 3

∴  𝑇𝐵 = 1934 ℎ𝑜𝑢𝑟𝑠 (𝑡𝑜 2𝑠. 𝑓. )

Orbits

Kepler’s 1st and 2nd Law

Kepler’s 1st Law

According to Kepler's first law, all planets move about the Sun in 
elliptical orbits, with the Sun at one focus. Since the ellipse's 
curvature is so low, the motion can be modelled as circular. 

Kepler’s 2nd Law

According to Kepler's second law, a line segment connecting a 
planet and the Sun sweeps out equal areas at equal time intervals. 
This is because the planet's speed is not constant; it moves faster as 
it gets closer to the Sun.

9
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𝑨𝟐
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Orbits

Newton wondered how the Moon knows Earth is there, proposing 
that gravity maintains its orbit. Though scientists haven't fully 
understood this concept, Newton's formula proved valuable to NASA 
for planning the six Apollo Moon missions four decades ago.

Even before space travel, data on the Moon’s orbit allowed 
calculations of Earth’s mass. With the Moon’s orbit period of 27.3 
days (𝑇 = 2.35 × 106 𝑠) and average radius of 384 000 𝑘𝑚, (𝑟 =
3.84 × 108 𝑚), Earth’s mass can be determined. 

Gravity is the cause of the centripetal force, so:

Gravitational force = centripetal force

𝐺𝑚𝐸𝑚𝑀

𝑟2
=

𝑚𝑀𝑣2

𝑟

Simplifying gives:

𝑚𝐸 =
𝑟𝑣2

𝐺

The speed of the Moon comes from the time it takes to orbit:

𝑣 =
2𝜋𝑟

𝑇
=

2𝜋 × 3.84 × 108

2.36 × 106
= 1020 𝑚 𝑠−1

∴ 𝑚𝐸 =
𝑟𝑣2

𝐺
=

3.84 × 108 10202

6.67 × 10−11

𝑚𝐸 = 6.02 × 1024 𝑘𝑔

Geostationary Orbits

A Geostationary satellite is in a geostationary orbit. This means that 
it:

• Travels above the equator in the same direction as that of the 
Earth (west to east).

• Has the same orbital period as the Earth's rotation around its 
own axis (24 hours).

• Always appears to be above the same point on the Earth’s 
surface. 

This orbit allows the satellite to continuously monitor the same area 
of the Earth.

Geostationary satellites are useful for transmitting TV and phone 
signals because they are stationary relative to the Earth's surface, so 
you don't have to adjust the angle of your receiver (or transmitter) to 
keep up.

10
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Rotation
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Geostationary Orbit

Worked example:

Calculate the height above the Earth that a satellite must be placed for it to 
orbit in a geostationary manner.

(mass of Earth = 6.0 × 1024 𝑘𝑔, radius of Earth = 6.4 × 106 𝑚)

Answer:

The gravitational force acting between the Earth and the satellite provides 
the centripetal force required for circular motion and to keep the satellite in 
orbit, therefore:

𝐹 =
𝐺𝑀𝑚

𝑟2  where 𝐹 = 𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 = 𝑚𝑎 = 𝑚𝜔2𝑟. 

∴ 𝑚𝜔2 𝑟 =
𝐺𝑀𝑚

𝑟2

Simplifying gives us:

𝜔 =
𝐺𝑀

𝑟3

The angular speed of the satellite is:

𝜔 =
2𝜋

𝑇

And the time period required for a geostationary orbit is 24 ℎ = 86,400 𝑠

Therefore: 
2𝜋

𝑇
=

𝐺𝑀

𝑟3

𝑟3 =
𝐺𝑀𝑇2

2𝜋 2
=

6.67 × 10−11 × 6.0 × 1024 × 864002

4𝜋2
= 7.57 × 1022

𝑟 =
3

7.57 × 1022 = 4.23 × 107𝑚

This is the radius of the satellite’s orbit. The radius of the Earth is 6.4 ×
106 𝑚, so the height of the satellite above the Earth’s surface is:

42.3 × 106 − 6.4 × 106 = 3.59 × 107 𝑚

So, the satellite is approx. 3.6 × 107 𝑚 above the Earth’s surface.

Low Orbiting Satellites

Low-orbiting satellites are those that orbit between 180 and 2000 
kilometres above the Earth's surface. These satellites are cheaper to 
launch and require less powerful transmitters as the satellites are 
closer to the Earth. Low-orbiting satellites are great for 
communications. 

However, because of their close proximity to Earth and fast orbital 
speed (in comparison to Earth's), several satellites must work 
together to provide continuous coverage.

Satellites in low orbit are close enough to see the Earth's surface in 
detail. Imagining satellites are typically positioned in this orbit and 
are used for imaging (e.g. mapping and spying) as well as weather 
monitoring.

11
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Gravitational Potential

You might remember from GCSE that the increase in gravitational 
potential energy of a body when it is raised through a height ∆ℎ is 
determined by the formula:

𝐸𝑃 = 𝑚𝑔∆ℎ

This formula, however, only works on Earth; what about gravitational 
potential energy on an astronomical scale? At astronomical scale it is 
the Gravitational potential, and this is not to be confused with the 
gravitational potential energy.

What is the gravitational potential?

Every object in a gravitational field has a gravitational potential that 
increases as they move away from the centre of the field.

The gravitational potential, 𝑉, at a point is the gravitational potential 
energy that a unit mass at that point would have or the amount of 
work done per unit mass to move an object from an infinite distance 
to that point in the field. 

For example, if a 1 𝑘𝑔 mass has −10 𝐽 of potential energy at a point 
Z, the gravitational potential at 𝑍 is −10 𝐽𝑘𝑔−1. The equation for 
gravitational potential in a radial field (such as the Earth's) is:

𝑉 = −
𝐺𝑀

𝑟

Where:

𝑉 = gravitational potential in 𝐽𝑘𝑔−1

𝐺 = gravitational constant in 𝑁𝑚2𝑘𝑔−2

𝑀 = mass of the object causing the gravitational field in 𝑘𝑔

𝑟 = distance from the centre of the object in 𝑚

Gravitational Potential

Let's take a closer look at this formula and reflect on our GCSE 
knowledge, where it was taught that an object with a mass of 𝑚 on 
the surface of the Earth has zero gravitational potential energy.

Although it is commonly said that an object on the surface of the 
Earth has zero gravitational potential energy (GPE), it is not entirely 
true. This simplification is made to help understanding in certain 
contexts, such as in the case of a pendulum that has zero GPE at 
the bottom of its swing. However, cutting the string of the pendulum 
would cause the object to fall.

An object on the surface of the Earth has gravitational potential 
energy (GPE) acting downwards, even though it is not falling. The 
reason for this is that the surface of the Earth provides an equal and 
opposite force, cancelling out the downwards force and preventing 
the object from falling. If the surface were to disappear, the object 
would fall. Thus, the object has GPE, which can be referred to as 
𝐺𝑃𝐸1.

If we lift this mass, we'll have to put in some work, and it'll have a 
new GPE at this height. We can call that 𝐺𝑃𝐸2. To find out the 
gravitational potential energy at that height we can just use:

𝐺𝑃𝐸2 = 𝑚𝑔ℎ

However, the object on the Earth’s surface has a GPE that is not 
equal to zero, so we would examine the change in the GPE from 
point (1) to point (2). As a result, the equation above becomes:

∆𝐺𝑃𝐸 = 𝑚𝑔ℎ

This equation we learned in GCSE physics shows that as an object 
is lifted, its gravitational potential energy (GPE) increases. This 
means that a change occurs in the object's GPE.

But, a change in potential energy is also know as work done. 
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Gravitational Potential

We know that Work done is:
𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 = 𝐹𝑜𝑟𝑐𝑒 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑊 = 𝐹 × 𝑑

We also know that 𝐹 = 𝑚𝑔

So:
𝑊 = 𝐹 𝑑

∆𝐺𝑃𝐸 = 𝑚𝑔 ℎ

This shows the link between 𝐺𝑃𝐸 and 𝑊. The force is 𝑚𝑔 in 𝐺𝑃𝐸, and the 
height, ℎ from 𝐺𝑃𝐸 is distance 𝑑 in 𝑊. 𝑊 and 𝐺𝑃𝐸 are both measured in 
Joules.

To lift an object to a certain height, work must be done, and energy must be 
put into the system. Due to the principle of energy conservation, the energy 
must go somewhere, and it goes into the new gravitational potential energy 
(𝐺𝑃𝐸) from the work done. Neglecting resistive forces, the energy put in 
becomes the 𝐺𝑃𝐸 of the object at its new height, ℎ.

However, GPE has limitations because it only takes into account g, which is 
the strength of gravity on Earth (9.81 𝑚𝑠−1). If ℎ is small, ∆𝐺𝑃𝐸 = 𝑚𝑔ℎ is a 
fantastic equation to calculate gravitational potential energy, and it works 
well for objects on Earth. But what if I want to calculate the gravitational 
potential energy of objects in Earth's orbit? Because the gravitational field 
strength decreases as the object goes further away from the Earth, 𝑔 =
9.81𝑚𝑠−1 no longer holds true at those points. As a result, the value of 𝑔 will 
vary and will no longer be constant.

But ∆𝐺𝑃𝐸 = 𝑚𝑔ℎ doesn’t consider changing 𝑔 values; instead, its meant to 
have a constant 𝑔 value.

So we can use 𝑔 =
𝐺𝑀

𝑟2  to find the new value of 𝑔 and plug it back into 

∆𝐺𝑃𝐸 = 𝑚𝑔ℎ. However, this would only be true if 𝑔 remained constant 
above a constant distance ℎ from the Earth's centre. But, what if, the object 
was always moving away from the Earth? For each new position, we can't 
keep calculating the 𝑔 value. As a result, we'll need to derive a dynamic 
equation that allows for 𝑔 to change.

Gravitational Potential

So:
∆𝐺𝑃𝐸 = 𝑊 = 𝐹 × 𝑑

𝐹 = 𝑚𝑔 and 𝑔 =
𝐺𝑀

𝑟2 . Therefore combining the two equations gives 

us:

𝐹 = 𝑚𝑔 =
𝑚𝐺𝑀

𝑟2

As a result:

∆𝐺𝑃𝐸 = 𝐹 × 𝑑 =
𝐺𝑀𝑚

𝑟2
× 𝑟

I selected 𝑟 because it represents the distance from the Earth's 
centre.

Then simplifying this we get:

∆𝐺𝑃𝐸 =
𝐺𝑀𝑚

𝑟

This is a new equation that calculates the GPE for an object of mass 
𝑚, regardless of how far away it is from Earth. Furthermore, it 
cancels out 𝑔.

However, because this equation relies on 𝑚, the value will vary 
depending on the object. But we want a generic equation, one that 
applies to any object, regardless of mass.

Luckily, by moving the 𝑚 to the other side, we may turn it into a 
general equation:

∆𝐺𝑃𝐸

𝑚
=

𝐺𝑀

𝑟

This simply means that you have the change of gravitational 

potential energy per unit mass 
∆𝐺𝑃𝐸

𝑚
. This would be the general 

equation. However, the change in gravitational potential energy per 
unit mass, will require its own letter, which is 𝑉. Therefore:

𝑉 =
𝐺𝑀

𝑟

13
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Gravitational Potential

𝑉 stands for gravitational potential, which is defined as the work done 
per unit mass to move a unit mass from infinity to that point.

The field is negligible at infinity, so 𝑉 is 0, which is its maximum 
value. 𝑉 is negative at all other points, indicating how much energy is 
necessary to move the object out of the field.

As seen below, the gravitational potential can be plotted against the 
distance from the centre of a mass (e.g., planet). 𝑅 is the radius of 
the mass (planet).

If you find the gradient of this graph at a particular point, you get the 
value of −𝑔 at that point. So:

𝑔 = −
∆𝑉

∆𝑟

Where:

𝑔 = gravitational field strength in 𝑁𝑘𝑔−1

∆𝑉 = change in gravitational potential in 𝐽𝑘𝑔−1

∆𝑟 = change in distance from the centre of the object in 𝑚

Gravitational Potential

Note: 

• This isn’t the inverse square law. Rather, the gravitational 
potential halves when the distance is doubled. When the 
distance triples the potential decreases by a third.  

• 𝑉 can also be represented as:

𝑉 =
−𝐺𝑀

𝑟

The negative sign just implies that gravity is an attractive force.

Remember you can find the area under a 𝑔 − 𝑟 graph to give you 
∆𝑉, the change in gravitational potential between two radial 
distances. 
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Gravitational Potential

The change in gravitational potential, ∆𝑉, is calculated by subtracting 
the potential at one distance from the potential at the other:

∆𝑉 = −𝐺𝑀
1

𝑟1
−

1

𝑟2

Since 𝑉 is the energy per unit mass, you can multiply the above 
equation by the mass of the object (𝑚) to get the energy (or work 
done) required to go from potential 𝑉1 to 𝑉2. Therefore, the total 
energy to complete this movement is: 

∆𝐺𝑃𝐸 = ∆𝐸𝑃 = 𝑚∆𝑉

This equation can also be shown graphically. The work done is the 
area under a force-distance graph.

Equipotentials

Equipotentials are surfaces (in 3D) and lines (in 2D) that connect all 
points with the same gravitational potential, 𝑉. This means that the 
potential does not change while you move along an equipotential - 
you do not lose or gain energy. As a result, the gravitational potential 
difference is zero as you go along the equipotential: ∆𝑉 = 0. As 
∆𝑊 = 𝑚∆𝑉, this means that the amount of work done is also zero.

Equipotentials for a uniform spherical mass are spherical surfaces. 
The field lines and the equipotentials are always perpendicular. The 
equipotentials and fields lines around Earth are shown in the 
diagram below. This is a 2D representation of a 3D shape. In reality, 
the equipotentials would resemble spherical shells that go all the 
way around the Earth.
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Escape Velocity 

The kinetic energy of an object at the start must be equal to or 
greater than the gravitational potential energy necessary to lift it to 
infinity in order for it to escape a gravitational field formed by a mass, 
𝑀. Regardless of the mass 𝑚 of the object, the escape velocity is the 
same for any object at that beginning radius, 𝑟.

1

2
𝑚𝑣2 =

𝐺𝑀𝑚

𝑟

So:

𝑣 =
2𝐺𝑀

𝑟
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Similarities and Difference between Electric and 
Gravitational Fields

Electric Field Gravitational Field 

Similarities 

Obey the inverse 
square law of force 

Coulomb’s law of force 

𝐹 =
𝑄1𝑄2

4𝜋𝜀0𝑟2

Newton’s law of 
gravitation

𝐹 =
𝐺𝑚1𝑚2

𝑟2

Have Uniform Fields 𝐸 is constant field lines 
are parallel 

𝑔 is constant field lines 
are parallel 

Have Radial fields Due to a point charge 
(𝑄)

𝐸 =
𝑄

4𝜋𝜀0𝑟2

Due to a point mass 
(𝑀)

𝑔 = −
𝐺𝑀

𝑟2

Differences

Action Between any two 
charged objects 

Between any two 
masses 

Type of Force Unlike charges attract
Like charges repel 

Attraction only 

Constant of 
proportionality

1

4𝜋𝜀0

= 8.99 × 109𝑁𝑚2𝐶−2

𝐺
= 6.67
× 10−11𝑁𝑚2𝑘𝑔−2
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Please see ’11.1.2 Gravitation and Planetary 
Motion worked examples’ pack for exam style 

questions.

 

For more revision notes, tutorials and worked 
examples please visit www.tutorpacks.co.uk.
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