

A2 Level Physics

Chapter 13 – Circular Motion 13.1.2 Kinematics of Circular Motion Worked Examples

© Tutor Packs

@tutorpacks

(O)

Kinematics of Circular Motion

Exam Style Question 1

The London Eye is a tourist attraction designed to give passengers a panoramic view over London. The giant wheel completes two revolutions in one hour. Each capsule moves with a constant speed of $0.26 \ m \ s^{-1}$ as it follows a circular path.

Calculate the radius of this circular path.

Kinematics of Circular Motion

Exam Style Question 1

Calculate the radius of this circular path.

Use $v = \frac{2\pi r}{r}$ and rearrange for r:

But $T = \frac{3600}{2} = 1800s$ because the London eye completes two revolutions in one hour therefore it can complete one revolution in 30 minutes (or 1800 seconds).

$$r = \frac{vT}{2\pi} = \frac{(0.26m\,s^{-1})(1800\,s)}{2\pi} = 74.48\,m$$

tutorpacks.co.uk

tutorpacks.co.uk

Kinematics of Circular Motion

Exam Style Question 2

' ' '

A satellite S orbits the Earth once every 87 minutes. Show that its angular speed is approximately 1×10^{-3} radians per second.

Earth

Kinematics of Circular Motion

Exam Style Question 2

Show that its angular speed is approximately 1×10^{-3} radians per second.

Use
$$\omega = \frac{2\pi}{T}$$

 $\omega = \frac{2\pi}{(87 \text{ minutes} \times 60)} = 1.2 \times 10^{-3} \text{ rads/s}$

tutorpacks.co.uk

tutorpacks.co.uk

Please see '13.1.1 Kinematics of Circular Motion notes' pack for revision notes.

For more revision notes, tutorials and worked examples please visit www.tutorpacks.co.uk.

tutorpacks.co.uk

tutorpacks.co.uk

© Tutor Packs